Characterization for a class of pseudoconvex domains whose boundaries having positive constant pseudo scalar curvature

نویسنده

  • Song-Ying Li
چکیده

Let (M, θ) be a strictly pseudoconvex pseudo-Hermitian compact hypersurface in C in the sense of Webster [34] with a pseudo-Hermitian real oneform θ on M . Let Rθ be the Webster pseudo scalar curvature for M with respect to θ. By the solution of the CR Yamabe problem given by Jerison and Lee [18], Gamara and Yacoub [10] and Gamara [9] (for n = 1), there is a pseudo-Hermitian real one-form θ so that (M, θ) has constant Webster pseudo scalar curvature Rθ. Let ρ be a defining function forM . Then θ = 1 2i (∂ρ−∂ρ) is a pseudo-Hermitian one-form for M , and any Hermitian one-form can be constructed in this way by using defining function of M . When M = S, the unit sphere in C, if ρ(z) = |z| − 1, then Rθ = n(n + 1) on M . The main purpose of the paper is to give some characterizations on ρ so that the pseudo scalar curvature Rθ is a positive constant on M if and only if M is CR-equivalent to the sphere S. Let D be a smoothly bounded pseudoconvex domain in C. Let u be a strictly plurisubharmonic exhaustion function for D (u = +∞ on ∂D). Let ρ(z) = −e−u(z). Then the Fefferman’s functional J(ρ) of ρ is defined as:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Curvature Groups of a Cr Manifold

We show that any contact form whose Fefferman metric admits a nonzero parallel vector field is pseudo-Einstein of constant pseudohermitian scalar curvature. As an application we compute the curvature groups H(C(M),Γ) of the Fefferman space C(M) of a strictly pseudoconvex real hypersurface M ⊂ C. 1. Statement of results Let M be a strictly pseudoconvex CR manifold of CR dimension n and θ a conta...

متن کامل

Estimates of Invariant Metrics on Pseudoconvex Domains near Boundaries with Constant Levi Ranks

Estimates of the Bergman kernel and the Bergman and Kobayashi metrics on pseudoconvex domains near boundaries with constant Levi ranks are given. Mathematics Subject Classification (2000): 32F45; 32T27.

متن کامل

On Stretch curvature of Finsler manifolds

In this paper, Finsler metrics with relatively non-negative (resp. non-positive), isotropic and constant stretch curvature are studied.  In particular, it is showed that every compact Finsler manifold with relatively non-positive (resp. non-negative) stretch curvature is a Landsberg metric. Also, it is proved that every  (α,β)-metric of non-zero constant flag curvature and non-zero relatively i...

متن کامل

Estimates for the Bergman and Szegö Projections for Pseudoconvex Domains of Finite Type with Locally Diagonalizable Levi Form

This paper deals with precise mapping properties of the Bergman and Szegö projections of pseudo-convex domains of finite type in C whose Levi form are locally diagonalizable at every point of the boundary (see Section 2 for a precise definition). We obtain sharp estimates for these operators for usual Lpk Sobolev spaces, classical Lipschitz spaces Λα and nonisotropic Lipschitz spaces Γα related...

متن کامل

Fibrations with Constant Scalar Curvature Kähler Metrics and the Cm-line Bundle

Let π : X → B be a holomorphic submersion between compact Kähler manifolds of any dimensions, whose fibres and base have no non-zero holomorphic vector fields and whose fibres admit constant scalar curvature Kähler metrics. This article gives a sufficient topological condition for the existence of a constant scalar curvature Kähler metric on X. The condition involves the CM-line bundle—a certai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007